SANAPHOR: Ontology-Based Coreference Resolution

نویسندگان

  • Roman Prokofyev
  • Alberto Tonon
  • Michael Luggen
  • Loic Vouilloz
  • Djellel Eddine Difallah
  • Philippe Cudré-Mauroux
چکیده

We tackle the problem of resolving coreferences in textual content by leveraging Semantic Web techniques. Specifically, we focus on noun phrases that coreference identifiable entities that appear in the text; the challenge in this context is to improve the coreference resolution by leveraging potential semantic annotations that can be added to the identified mentions. Our system, SANAPHOR, first applies state-of-the-art techniques to extract entities, noun phrases, and candidate coreferences. Then, we propose an approach to type noun phrases using an inverted index built on top of a Knowledge Graph (e.g., DBpedia). Finally, we use the semantic relatedness of the introduced types to improve the stateof-the-art techniques by splitting and merging coreference clusters. We evaluate SANAPHOR on CoNLL datasets, and show how our techniques consistently improve the state of the art in coreference resolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corpus based coreference resolution for Farsi text

"Coreference resolution" or "finding all expressions that refer to the same entity" in a text, is one of the important requirements in natural language processing. Two words are coreference when both refer to a single entity in the text or the real world. So the main task of coreference resolution systems is to identify terms that refer to a unique entity. A coreference resolution tool could be...

متن کامل

Corefrence resolution with deep learning in the Persian Labnguage

Coreference resolution is an advanced issue in natural language processing. Nowadays, due to the extension of social networks, TV channels, news agencies, the Internet, etc. in human life, reading all the contents, analyzing them, and finding a relation between them require time and cost. In the present era, text analysis is performed using various natural language processing techniques, one ...

متن کامل

Coreference Resolution Using Semantic Relatedness Information from Automatically Discovered Patterns

Semantic relatedness is a very important factor for the coreference resolution task. To obtain this semantic information, corpusbased approaches commonly leverage patterns that can express a specific semantic relation. The patterns, however, are designed manually and thus are not necessarily the most effective ones in terms of accuracy and breadth. To deal with this problem, in this paper we pr...

متن کامل

research outputs Overcoming schema heterogeneity between linked se - mantic repositories to improve coreference resolution

Schema heterogeneity issues often represent an obstacle for discovering coreference links between individuals in semantic data repositories. In this paper we present an approach, which performs ontology schema matching in order to improve instance coreference resolution performance. A novel feature of the approach is its use of existing instancelevel coreference links defined in third-party rep...

متن کامل

The Open University ’ s repository of research publications and other research outputs Overcoming schema heterogeneity between linked semantic repositories to improve coreference resolution

Schema heterogeneity issues often represent an obstacle for discovering coreference links between individuals in semantic data repositories. In this paper we present an approach, which performs ontology schema matching in order to improve instance coreference resolution performance. A novel feature of the approach is its use of existing instancelevel coreference links defined in third-party rep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015